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Structural instabilities in the hexagonal-packed cylinder phase of block copolymers subject to uniaxial
tension orthogonal to the column axis are investigated theoretically. For small strains, a Landau elastic
free energy density which is identical to that for hexagonal columnar liquid crystals can be used to deter-
mine the threshold and form of the instability, which can be of two types. In the first the distortion field
is scalar and the columns or rods are modulated in thickness, while in the second the distortion field is a
vector, resulting in saddle-splay curvature. A detailed theoretical analysis of the instability is presented
for asymmetric diblock copolymers near the ordering transition. For these materials, the first-order
phase transition to the hexagonal-packed rod phase is induced by composition fluctuations and belongs
to the Brazovskii class. The coefficients in a series expansion of the Brazovskii free energy density are
identified with the elastic constants in the elastic free energy density, enabling them to be calculated
from a microscopic random phase approximation model. It is thus shown that small uniaxial strains
should induce a transition from the hexagonal rod phase to a “‘modulated rod” structure above a critical
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strain.

PACS number(s): 61.25.Hq, 61.30.Cz, 61.41.+e¢, 62.20.Dc

I. INTRODUCTION

The mechanical properties of block copolymers are of
both practical and fundamental importance. The elas-
tomeric properties of block copolymers are utilized in po-
lymer blend compatibilizing or hardness modification ap-
plications, for example [1]. At a more fundamental level,
the effect of mechanical deformations on thermodynamic
phase behavior has recently begun to be investigated us-
ing model block copolymer systems. For example, melt-
ing transitions induced by shear have recently been ob-
served for the lamellar phase in diblock melts [2] and cu-
bic micellar phases in triblock copolymer solutions [3].

When an amorphous block copolymer is cooled below
its order-disorder transition (ODT) temperature, incom-
patible block components tend to microphase separate
into structures with periods on the order of the polymer
radius of gyration. Macrophase separation is prevented
by the chemical connectivity of the blocks. In the classi-
cal picture, lamellar, hexagonal-packed cylinder, or
body-centered-cubic (bcc) micelle phases form depending
on the diblock composition, specified by f, the volume
fraction of one component, and yN. Here, )y is the
Flory-Huggins interaction parameter that accounts for
local and nonlocal interactions between polymer seg-
ments and N is the degree of polymerization. Empirical-
ly, x is inversely proportional to temperature.

The effect of symmetry-breaking mechanical fields on
microphase-separated structures is of great interest for
several reasons. First, in the context of recent work on
diblock copolymers near the order-disorder transition, a
variety of new structures such as hexagonal modulated
lamellae, hexagonal perforated layers [S], and deformed
cylinders [6] have been observed between the classical
lamellar and hexagonal-packed cylinder phases. The na-
ture of the deformations of the cylinders (modulations or
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saddle splay) has not yet been ascertained, but small angle
neutron scattering reveals an in-plane rhombic lattice [6].
These experiments have been performed on samples pre-
viously subject to reciprocating shear, and it is not clear
what influence mechanical deformation has on the ther-
modynamic stability of lamellar and hexagonal-packed
cylinder phases. Uniaxial tension is the simplest mechan-
ical deformation that can be applied and structural insta-
bilities that can result can be interpreted using quasistatic
elastic theory.

Second, and related to the above, the relation between
the thermodynamic and mechanical properties of ther-
motropic liquid crystals and block copolymers can be
developed. The instability of the smectic (lamellar) phase
in liquid crystals under uniaxial tension is an example of
a Helfrich-Hurault instability [7]. When a monodomain
lamellar phase in subject to a uniaxial strain orthogonal
to the layers under the constraint of a fixed number of
layers (a so-called quasistatic deformation), above a criti-
cal strain a buckled structure results. The critical strain
depends on domain size and the lamellar compression
and splay elastic constants [8,9]. The deformation results
when the time scale for global rearrangements where the
number of layers is changed by edge dislocation creation
is long compared to the time scale of the strain experi-
ment. Within certain time ranges the system can stay in
a constrained metastable state with a fixed number of lay-
ers. This holds for smectic liquid crystals and should
hold over a wider range for polymeric systems where the
internal relaxation times are much longer [10,11]. The
structure above the critical strain is initially square
modulated lamellae. As the strain is increased, defects
proliferate and a square array of “focal conic” defects re-
sults [7].

Previous studies have been concerned with quasistatic
tensile deformations in lamellar phases. Kawasaki and
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Ohta analyzed the mechanical properties of both weakly
and strongly segregated lamellar block copolymers within
mean field theory [12]. In addition, they considered the
cylindrical and spherical morphologies in the strong-
segregation limit. Mean field theory is not valid near the
ordering transition for block copolymers of finite molecu-
lar weight; instead, composition fluctuations drive the
first-order phase transitions to the disordered phase [13],
placing block copolymers in the Brazovskii class [14].
The quasistatic properties of lamellar diblocks near the
ordering transition have recently been treated theoretical-
ly [10,11] using fluctuation theory [15]. In Ref. [11], uni-
axial tensile strains were considered, while applied
stresses have additionally been considered [10].

In this paper the behavior of a hexagonal columnar
phase subject to small uniaxial tensile strains is studied.
An undulation instability for this phase in thermotropic
liquid crystals has been observed [16,17]. However, the
deformation was different to that considered here because
samples with columns orthogonal to parallel plates were
subject to a shear parallel to the plates, the resulting
structure consisting of undulations normal to the column
axis. The continuum elastic theory should apply equally
for tensile deformations of hexagonal columnar (some-
times called discotic) liquid crystals or the hexagonal-
packed cylinder phase in diblock copolymers, although it
is the latter which are considered in detail here. Two
types of deformation are possible where the deformation
field is a scalar (giving a “modulated” cylinder structure)
or a vector (giving ‘“helicoidal”-type structures). First,
the continuum elastic theory for columnar phases, and
then compositional fluctuation theory for weakly segre-
gated diblocks, are presented. This enables the elastic
moduli for the hexagonal-packed cylinder phase in di-
block copolymers to be calculated and the type of struc-
ture formed for small tensile deformations to be
identified. Finally, we summarize and briefly discuss a
possible connection between these structures and those
recently observed on heating asymmetric diblock copoly-
mers near the order-disorder transition, which were sub-
ject to reciprocating shear.

II. THEORY

A. Continuum elastic theory

We start from the free energy given by de Gennes and
Prost for the hexagonal columnar phase formed by ther-
motropic liquid crystals [7]. Within a static limit the
cylinder deformations are specified by the two-
dimensional vector field

v(r)=(v,(r),v,(r)),

where the axis system is defined in Fig. 1. The continu-
um free energy expanded to lowest order is [7]

_B
F——Z—(axux +9,u, )?
C
+5 [Bxu,—d,u, )+ (3,u, +3,u,)*]

K
+ =[R2, P+ (32u, ] (1)
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FIG. 1. Illustrating the deformation considered in this work,
together with the axis system used.

Here B is an elastic constant equal to the compressional
modulus B for static phenomena. For dynamic processes
where the time for reaching equilibrium density is large
compared to the experimental time scale, B=B —D?/ A4,
where the coefficients 4 and D are elastic constants relat-
ed to the bulk dilatation 6 [7]:

A B
F=2-6"+2-(3,v,+9,v,

+%[(axu,, —3,v,)2+(3, v, +3,v, ]

K 2. \2 2.2
+DOd, v, +3,v, )+ —[(B, P+@y, P @

B is the elastic constant corresponding to homogeneous
compression or dilatation of the columns, C is a saddle-
splay constant for elliptical deformations of the columns
(with constant average diameter), and K; is the column
bending elastic constant. It is important to note that the
u(r) are column displacement variables and not the local
curvatures considered in Ref. [18], i.e., the saddle-splay
modulus is not the same as that occurring in the Helfrich
free energy for locally deformed layers [19]. The ap-
propriate choice of variables for quasistatic deformations
are the v(r) [7,20]. For small deformations the symmetry
of the hexagonal phase leads to the requirement that
9,v,=—3,v, and d,v, =3,v,. Using these relations in
Eqg. (2) and rearranging gives
F=LB+20)[(3,v,)*+(3,v,2]+20,v,3,v,(:1B—2C)

x=y-y
K
+—23—[(6§vx 2+(32v, )] . 3)

Two types of deformation can be considered depending

on the signs of (B—2C) and 0,v,0,v,, viz., (i) %ESC,

9,v,8,v, 20 and (ii) 1B >C, 8,v,9,v, <0. Illustrations
of possible types of deformations corresponding to these
cases are presented in Fig. 2. Before describing these de-

formations further, we extend Eq. (3) to higher orders,
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FIG. 2. (a) A “modulated” cylinder structure where the di-
ameter varies sinusoidally along the length of the cylinder axis.
This structure can be described by a scalar function u (r). (b) A
“twisted” cylinder structure in the hexagonal cylinder phase
subject to a two-dimensional deformation field u(r), where there
is an elliptical deformation (at constant average diameter) im-
plying saddle-splay curvature.

which is necessary when calculating instabilities. The re-
sult is

B
F=""[8,v,+3,u, = 1(3,0,)* = 3(3,v, ]’
+ C 1 212
‘é—[( -9, v, —+(9,v, )2+ 1 1+(0,v,)°]
+ £ 8,u, +0,u, P+ (B, 2%, )?] . @)
2 2 zYx z%y .
1. Case (i)

A deformation for which d,v,0,v, 20 can always be
reparametrized in terms of a scalar field v(r). Then the
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free energy reduces to the Landau—de Gennes free energy
for the lamellar phase:

F=LB+C)[d,v—L3,v)? P+ 1K;(3)* . (5)

The analysis of the strain-induced buckling instability is
then identical to that for a lamellar phase, with the
compressional modulus replaced by (B +C) for the hex-
agonal phase [7].

We introduce a uniform strain € on a system of thick-
ness L such that a uniaxial deformation orthogonal to the
layers is specified by v=ex +u(r) (note that the layers of
cylinders are here normal to x). Considering the free en-
ergy per unit volume, ¥, substitution of v into Eq. (5) and
integrating gives to lowest order [10]

f=4B+C)e*+Be[(d,u)—1((3,u)?)]
+1B(3,u)?) + LK, {(d2u)) , (6)

where ( ) denotes a spatial average.

The critical strain can then be calculated adopting an
ansatz for u (r). For lamellae, Delrieu showed that above
the critical strain a square modulated structure has the
lowest free energy [21] and u (r) can be parametrized as

1 (1) =2 sin(x)[cos(ky) +cos(kz)] , 7
V2
where u, is the amplitude of the undulation of wave
number k, and k=1/L ensures that u vanishes at the
boundaries since L is the domain size [8]. The critical
strain €, can then be shown to be given by

e, =2«[K;/(B+C)]"?, (8)

with a wave vector k =V'k/A where A———\/k; /(B+C)
[7]. Expressions for the strain free energy density beyond
the critical strain and the stress (which can be obtained
from the derivative of the free energy with respect to
strain) have been given for a lamellar system by Wang
[10]. Since equivalent results should hold for the
hexagonal-packed cylinder phase which behaves as a lay-
ered system for deformations in the (xy) plane, we do not
give details again here.

Representative calculations of density distributions in
the square modulated structure are shown in Fig. 3 for
three orthogonal planes. The compositional order pa-
rameter in these density plots was parametrized as

W(r)=cos[2q,(x +u)]+cos[qg,(x +u)+gq,y]

+cos[ —q,(x +u)+gq,y] . 9

Here g, =q/2, q,=V'3q /2, with ¢ =27 /d. The undula-
tion term u (r) was represented by Eq. (7) with u,=0.07,
and x and k were chosen to be 7/2d and q /2, respective-
ly. The hexagonal ordering of cylinders (distorted away
from x =0 due to the boundary conditions) is clear in the
(x,y) plane (at z=0). The modulations of the cylinders
are clearly evident in the (x,z) plane at y =0, while the
square symmetry of the modulations is illustrated in the
density plot in the (y,z) plane (at x =d /4).
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FIG. 3. Representative con-
tour plots of the density in three
orthogonal planes in the square
modulated  hexagonal-packed
cylinder phase. The density pa-
rametrization is described in the
text.

2. Case (ii)

This corresponds to a saddle-splay deformation,
specified by the vector field u(r)=(vx,vy ). The term sad-
dle splay may be used because the cross term in the free
J

energy, Eq. (3), axvxayvy <0, i.e., displacements in two
orthogonal directions are of opposite sign. The free ener-
gy density for a strain in the (xy) plane: e=¢;ite¢,j,
specified by v, =g, x +u,(r), v,=¢,y +u,(r), can be ob-
tained by integrating Eq. (4):

f=(l/V)de g[s,+axux+sy+ayuy—%(alux )2—%(31%)2]2

C C K
+ o le+8u,—e, —3,u, +1(d,u, ¥+ 1(3,u, )2]2+7[ayux +axuy]2+—23—[(a§ux P+(32u,)?] | .

Vector field deformations were not considered further,
because it turns out that this is not the structural instabil-
ity predicted for diblock copolymers. Preliminary work
indicates that a variety of helicoidal-type structures are
possible but further details will be the subject of future
work.

B. Brazovskii fluctuation theory

A free energy functional for a weak first-order phase
transition allowing for compositional fluctuations was de-
rived by Brazovskii within the Hartree approximation.
This theory was applied to weakly segregated block copo-
lymers by Fredrickson and Helfand [13], and it was

(10)

shown that the phase diagram becomes dependent on the
degree of polymerization, N, in addition to the mean field
variables f and yN. Also the phase transition for sym-
metric diblocks, which in mean field theory is second or-
der, becomes first order when compositional fluctuations
are considered. The fluctuation-induced first-order phase
transition differs from the mean field first-order phase
transition because it is not the consequence of a cubic
term in a Landau free energy. For a symmetric diblock
copolymer, where the cubic term in the Landau free ener-
gy is zero, a fluctuation-induced first-order phase transi-
tion results from the sign change of the quartic term in
the potential (so that it must be expanded to sixth order
to ensure stability). For an asymmetric diblock copoly-
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mer, the effective Hamiltonian can be written as an ex-
pansion in the average compositional order parameter :

BH[¢(r)]= [ dr | Lry?+ Le[qd?+2q3(Vy) +(V2y?)]

! 1!3 u !4 v lls w lﬁ

Here B=1/kyT is the Boltzmann factor, y=cN /¢ is
the scaled order parameter with ¢(r) the compositional
order parameter, and g is the scaled wave number at the
structure factor peak. N=Na®/v?, with a and v denoting
segmental length and volume, respectively, is a Ginzburg
parameter [15]. The coefficient ¢ is defined in Ref. [13],
and in dimensionless units e =(1/24x*), with x* =gq{R/,
R, being the copolymer radius of gyration.
7=2[(xN); —xN]/c? with (yN), the value of YN at the
spinodal,

t=NT,/(N"23)=yN~1?
u=NT,/(N"2cH=AN"172

etc., where the I',, are vertex functions calculated within
the random phase approximation [4]. For consistency
with previous work, the term u is used in this paper both
for a fourth-order coefficient in a Landau expansion and
for the displacement field u(r), although its meaning
should be clear from the context.

The Hartree potential for the hexagonal rod phase can
then be written, extending the analysis for the lamellar
phase given in Ref. [15], as

BLy¢(0)]= [dr {Lry PP+ Le[q4P*+243(VD)?

+(V2?)]
l

tR Up — Ur Wrp —
+ =P+ P+ P+ ¢ .
TR

(12)

The order parameter ¥={(r)), and the coefficient 7 is
the renormalized inverse susceptibility, while ¢ through
wy are coefficients that are multiples of higher order ver-
J
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tex functions. The procedure for calculating these
coefficients is given in Ref. [15], which also contains ex-
plicit expressions for 73, ug, and wy for a symmetric di-
block copolymer (for which tz,vg =0). The approach
described in the Appendix of Ref. [15] was extended to
calculate the renormalized coefficients for a hexagonal
cylinder phase. Within the Hartree approximation and
performing a self-consistent one-loop calculation [22,15],
we obtain

TR =T+du ’r;”z, (13)

g =6t , (14)
3du 7'1;'/‘ |

uR_3u - ! 12 1 (15)
S(1+3du g '7) J

vg=15v , (16)

_ 891du’
49675 > 2(1+Ldu 15°?)

Wg (17

where d =3x*/2m. The numerical coefficients $ and 3!
in up and wy depend on the representation for the order
parameter [and are here consistent with Eq. (18)] due to
the isotropic approximation [22] adopted for the fourth-
and sixth-order vertex functions.

For a hexagonal-packed cylinder phase with anisotrop-
ic fluctuations parametrized as u(r)=(u,(r),u,(r)) as in
the preceding section, the compositional order parameter
can be written as

P(r)=24 cos[2q,(x +u,)]
+24 cos[q,(x +u,)+q,y +u,)]
+24 cos[ —q,(x +u,)+q,(y +u,)], (18)

where g, and g, are defined after Eq. (9). This expression
is then substituted into Eq. (12) to give a free energy den-
sity. In the phase approximation [12], the phase shift is
assumed to be a slowly varying function (over several
structural periods). Then averages of the type

(cos’la(x +ux)+b(y +uy)])=1,

where a,b are multiples of g, and q,, respectively, and
( ) denotes an average over one period. Within this ap-
proximation, and using the order parameter representa-
tion (18), we obtain a free energy density,

f=FfolA)+(1/V)A% fdr{6q8——24q(2)qf[l+8xux +9,u, +3,u, )" —8qfqi[1+9,u, +0,u,+3,u,]*

+36g2 (143, 1, )2 +(3,u, )2 +(3,u, ) +4g[(d,u, ?+(14+3,u,) > +(3,u,)*]

+8g2g2[ (140, u, )+ (3,u, P +(d,u, )} {(3,u, P+ (1+3,u,) +(3,u,)?]

y

+2(14+3,u, WO, uy (143, u, (3,1, ) +2(3,u, )(1+0d,u,)+2(0,u, )(d,u,)]

+2(8, 1, )(1+3,u,)[(3,u, (143, u,) +2(3,u, )(d,u,)]+2(8,u, *(d,u,)’]

+129x 2(d2u, )*+49y (d2u, )*} . (19)
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Here,
fold)=3[rg+e(qg?—q3)*]A*+2tg A+ Bup A*+3vg A°+ 8w, 46 (20)

is the local part of the free energy density, where the numerical coefficients are m /n!, where m is the number of closed
wave vector circuits of order n. The number of layers is fixed during the quasistatic deformation considered here. The
deformation is along a general direction in the (x,y) plane: €é=¢,i+¢,j. In the sample of equilibrium dimensions

Lo x,Lg,y, the x and y periodicities are Dy, =2m/qq, and D, ,

L,,L, we have D, =27/q,, D =2m/q,, S0 that
L,/D,=(1+¢,)=qq, /qx
and
L,/D,=(1+¢,)=q,,/q, -
Then for small ¢,
_ 2
g2=(1go(1—2¢,), g¢2= —23— (1—2¢,) .

=27/qo,,- In the stretched sample of dimensions

Substituting these expressions for ¢2 and q}? into Eq. (19), we obtain a free energy density,

f=foA)+(1/V) A% [dr{6gd(e, +0 u, +e,+d,u,—L(d,u,) —1(d,u, )]

+3g8le, +0, u,
+3¢3[(8%u, )*+(d2u

where u, has been changed to —u, and u, to —u,. The
strain dependent part of this equation has the same form
as the de Gennes-Prost expression (4) so that the elastic
constants for the hexagonal-packed cylinder phase of

block copolymers can be identified as

B=12eq34?, (22)
C=6eq3A?, (23)
K,=6eq3A4? . (24)

These can be converted to dimensional units by multipli-
cation by kzT/(N3%a3) for B and C, or
a’kyT/(N3%a3) for K, [10]. According to the inequali-
ties derived in the preceding section, since B =2C, block
copolymers in the hexagonal-packed cylinder phase sub-
ject to small uniaxial tension should undergo a transition
to a modulated structure above the critical strain given
by Eq. (8). Furthermore, as this deformation is specified
by the scalar field u (r), it has the same symmetry as that
occurring in a lamellar phase under tension, i.e., a square
modulated structure. We also note that this result is in-
dependent of the direction of the strain in the (x,y) plane.

C. Calculation of the elastic constants
for a block copolymer

The three elastic constants can be expressed in scaled
dimensionless units as functions of e 42. In principle, the
amplitude A4 can be determined from the minimum of the
free energy density in the absence of distortion, Eq. (20)
[11]. However, an analysis analogous to that for a lamel-
lar phase [15] would involve calculation of the fifth-order

—e, —d,u, +1(8,u, >+ 1(8,u, P +3g3[9,
M

u,+3,u, ]’
(21)

[

vertex functions in the random phase approximation,
since the fifth-order term for the hexagonal rod phase is
nonzero, and these have not been computed to date. In
addition, the roots of the cubic equation resulting from
the minimization of Eq. (20) with respect to 4 would
need to be solved numerically. An alternative, and
simpler, procedure for the hexagonal rod phase is to re-
turn to the Brazovskii representation for the thermo-
dynamic potential. Although this obscures the origin of
the fluctuation-induced phase transition, the amplitude 4
can be calculated in a straightforward manner following
the procedure described in [13].

Here we determine the minimum of the thermodynam-
ic potentials for the lamellar and hexagonal phases
[14,13]:

1 A
(1>,(A,)=H(r12—r(2))+ (rf2=rg) =7 4F, 29)

d 1/2 __ 1/2)

Cph(Ah) (rh—r0)+ —I/Z(r
+2,¢A,,—%A,, : (26)

where the renormalized inverse susceptibilities are given
by

A
r0=T+—£11v]7 , 27)

_ dA
n=rt+—-— N2 +r4?, (28)
—r+—22 a2, (29)

thl/Z
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At the minimum of the potential, the Brazovskii equa-
tions of state are [14]

h1=r1Az—%AP=0 , (30)
_ 2 A s
hh—rhA,,-Fp.Ah—?Ah—-O. (31)

These equations, together with (27), (28), and (29), can be
solved simultaneously for the amplitudes and inverse sus-
ceptibilities in the lamellar and hexagonal phases. The
transition between these phases occurs when the poten-
tials are equal, and the order-disorder transition is locat-
ed at ®=0. The quantities x *, i, and A were extracted
from the Table in [13]. Substitution of the amplitudes
into Egs. (22)-(24) then enables the scaled elastic con-
stants to be calculated. Figure 4 shows representative
calculations as a function of

r=rp—dArg PN,

where u has been expressed in dimensionless units [15].
Two values of f and N have been chosen such that the
hexagonal rod phase is the high 7 (temperature) ordered
phase (phase diagrams for these values of N are given in
[13]). As noted by Fredrickson and Helfand, these values
of N correspond to Ginzburg parameters lower than
those for which the Hartree approximation is rigorously
valid. However, quantitative comparison between the
predictions of fluctuation theory for the structure factor
in the disordered phase and small angle neutron scatter-

(a) 1

o lam. - hex.

X 4 F 3

© ot ]

m 1
2 ODT

10 -9 -8 -7 -6 -5 -4 -3 -2

T =2[(xN), - xN]
2 A T T T T T T A ]
(b) ]
1.5 ]

. lam. - hex.

e

o 't ]
o oDT
oL L ‘l...1‘..1..:‘1711"‘,

P PERFE B
2 -18 -16 -14 -12 -1 -08 -0.6
= 2[(xN), - xN]

FIG. 4. Scaled dimensionless elastic constants as a function
of "=2[(xN);—xN], which is an increasing function of tem-
perature. Solid line, lamellar phase; dashed line, hexagonal-
packed cylinder phase. Here, B*=R/B/c?, C*=B*/2, and
K% =2K3R;q(2)/cz. The diblock compositions and scaled de-
grees of polymerization are (a) f=0.40, N=10* and (b)
£=0.45, N=10°.
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ing experiments has been obtained for degrees of poly-
merization N ~10* [23]. The essential features of these
calculations are that (i) the elastic moduli decrease mono-
tonically with increasing 7 (because the order parameter
amplitude does); (ii) they are of the same order of magni-
tude as those for lamellae, but smaller when comparisons
are made for a given 7 for a particular system; and (iii) as
for lamellae [11], the ordered phase can persist as a meta-
stable state above the order-disorder transition.

II1. DISCUSSION AND SUMMARY

Instabilities in hexagonal columnar phases formed by
liquid crystals and block copolymers have been studied
theoretically in this paper. Detailed calculations were
presented for the mechanical properties of the
hexagonal-packed rod phase in diblock copolymers sub-
ject to a uniaxial tensile strain. In contrast to the case of
thermotropic liquid crystals, the elastic constants of
block copolymers are simple to compute using the ran-
dom phase approximation, where details of chemical
structure are not required.

We have shown that because the saddle-splay elastic
constant C satisfies C = %l—? (as an equality), where Bis the
compressional modulus, diblock copolymers subject to a
uniaxial tensile strain should undergo a Helfrich-Hurault
transition to a square modulated structure. The critical
strain for this transition is

e, =2[Ky/(B+C)]'*%,

where k=m/L is the wave vector orthogonal to the
planes of rods and K3 is the column bending modulus.
This transition should be independent of the orientation
of the strain in the plane orthogonal to the rod axis.

This work complements previous studies on the lamel-
lar phase of diblock copolymers subject to uniaxial tensile
strains [11,12] or tensile and compressive stresses [10].
Small compressive strains change the layer period but do
not lead to a structural instability for the lamellar phase,
and the same should hold for the hexagonal columnar
phase when strains are applied orthogonal to the column
axis. Qualitatively, it has been shown that under a
compressive strain the lamellar phase will undergo a
quasithermodynamic melting to the isotropic phase prior
to the spinodal if the nucleation barrier is not too high
[10]. If the barrier is high or the strain is increased at a
rate where the formation of the isotopic phase is
preempted, then the strain can be increased beyond the
quasithermodynamic melting point to the spinodal,
where melting to the isotropic state will occur directly.
For an applied stress, however, a mechanical instability
sets in before the spinodal, which cannot be accessed in
this case. Similar effects are anticipated for the hexago-
nal columnar phase, which behaves as a layered phase
when deformations are applied orthogonal to the
columns. The theoretical analysis will not be as tractable
as that for lamellae [10] because the free energy density
will contain third- and fifth-order terms. For a columnar
phase subject to compression along the column axis, a
buckling instability results if the stress frequency is high
enough such that flow does not occur along the fluid
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direction and providing molecular permeation between
columns can be neglected [7]. This deformation has al-
ready been analyzed in detail by a number of authors
[7,19,20].

Inclusion of higher-order terms in the Fourier series
representation of the displacement field for the Helfrich-
Hurault instability in a lamellar phase has recently been
considered [24]. It was shown that a chevron-type struc-
ture, where the undulating layers develop sharp changes
in orientation, should result when boundary conditions
are absent, even for small strains. However, at the insta-
bility threshold a single mode analysis is valid [24]. A
chevron structure is inconsistent near boundaries because
undulations must vanish continuously as the boundaries
are approached. As the strain increases above the critical
value, the elastic free energy density employed here be-
comes a poorer approximation, and higher order terms
would need to be included. The possible subsequent de-
velopment of defect structures, such as the arrays of focal
conics observed for lamellar phases, is beyond the scope
of the quasistatic theory.

As discussed in the Introduction, this paper is con-
cerned with quasistatic deformations, i.e., the effects of
polymer flow have been neglected. This should not be a
significant drawback in practice when the polymers are
below or at their entanglement molecular weights and yet
are still microphase separated [10]. A recent calculation
for the diffusion of a strongly segregated diblock chain
across an interface in the lamellar phase supports our as-
sumption that structural rearrangements can be slow on
molecular time scales because this diffusion is found to be
a very slow process [25].

Another refinement to the present work would be to al-
low for block copolymer “conformational asymmetry,”
i.e., different segment lengths b =Rg\/N /6 within the
blocks. The phase diagram for diblock copolymers has
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been shown theoretically [26,27] and experimentally
[6,28] to depend on e=(pgb?)/(p 4b 4%), where p , and
pp denote pure component densities, as well as f, xN,
and N. In particular, regions of complex phases recently
observed near f =0.65 are distinct from those near
S =0.35, and this difference has been ascribed to confor-
mational asymmetry. Particularly interesting in the con-
text of the present work and previous studies of mechani-
cal instabilities in the lamellar phase is that modulated
lamellar and deformed hexagonal-packed cylinder phases
have been observed in the region of the phase diagram
near f,=0.65 (where f, is the volume fraction of the
block with the larger segment length) for diblocks aligned
using reciprocating shear [5,6]. It may be that the hexag-
onal modulated lamellar and modulated cylinder struc-
tures observed are metastable structures induced by
mechanical deformation, or they may be in thermo-
dynamic equilibrium. This has not yet been resolved be-
cause the structures have been determined using aligned
samples. We have seen that the continuum elastic theory
for lamellar and hexagonal columnar phases allows for
in-plane deformations when small strains or stresses are
applied. The Curie principle states that the microstruc-
ture should retain those symmetry elements which are
common with those of the deformation field [29], i.e.,
two-dimensional deformations such as shear lead to
structures other than the square one expected for a ten-
sile deformation. Whether such structures are in thermo-
dynamic equilibrium or not, mechanical deformations
will influence their stability. A complete analysis for
more general elastic distortions and, additionally, consid-
ering dynamic mechanical deformations should yield in-
sight into complex phase behavior, and contribute toward
the development of new applications based on unusual
polymeric mechanical properties.
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FIG. 3. Representative con-
tour plots of the density in three
orthogonal planes in the square
modulated  hexagonal-packed
cylinder phase. The density pa-
rametrization is described in the
text.



